The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana.
نویسندگان
چکیده
SUMMARY Successful pathogen infection likely involves the suppression of general antimicrobial host defences. One Pseudomonas syringae virulence factor proposed to act in this manner is coronatine (COR), a phytotoxin believed to function as an analogue of one or more jasmonates, a family of plant growth regulators. COR biosynthetic (COR(-)) mutants of P. syringae pv. tomato strain DC3000 exhibit reduced virulence on Arabidopsis thaliana and tomato. In the present study, three genetically and biochemically defined COR(-) mutants of DC3000 were used to explore potential effects of COR and its precursors, coronafacic acid (CFA) and coronamic acid (CMA), on defence signalling pathways in A. thaliana. Inoculation with wild-type DC3000 resulted in the accumulation of several jasmonate-responsive transcripts, whereas infection with a mutant strain that accumulates CFA, which is structurally similar to methyl jasmonate (MeJA), did not. Thus, COR, but not CFA, stimulates jasmonate signalling during P. syringae infection of A. thaliana. The ability of the COR(-) mutants to grow to high levels in planta was fully restored in A. thaliana lines deficient for salicylic acid (SA) accumulation. Although the COR(-) mutants grew to high levels in SA-deficient plants, disease symptoms were reduced in these plants. Collectively, these results indicate that COR is required both for overcoming or suppressing SA-dependent defences during growth in plant tissue and for normal disease symptom development in A. thaliana.
منابع مشابه
The coronatine toxin of Pseudomonas syringae is a multifunctional suppressor of Arabidopsis defense.
The phytotoxin coronatine (COR) promotes various aspects of Pseudomonas syringae virulence, including invasion through stomata, growth in the apoplast, and induction of disease symptoms. COR is a structural mimic of active jasmonic acid (JA) conjugates. Known activities of COR are mediated through its binding to the F-box-containing JA coreceptor CORONATINE INSENSITIVE1. By analyzing the intera...
متن کاملThe Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae.
Many plant pathogens suppress antimicrobial defenses using virulence factors that modulate endogenous host defenses. The Pseudomonas syringae phytotoxin coronatine (COR) is believed to promote virulence by acting as a jasmonate analog, because COR-insensitive 1 (coil) Arabidopsis thaliana and tomato mutants are impaired in jasmonate signaling and exhibit reduced susceptibility to P. syringae. T...
متن کاملThe Coronatine Toxin of Pseudomonas syringae Is a Multifunctional Suppressor of Arabidopsis DefenseW OA
The phytotoxin coronatine (COR) promotes various aspects of Pseudomonas syringae virulence, including invasion through stomata, growth in the apoplast, and induction of disease symptoms. COR is a structural mimic of active jasmonic acid (JA) conjugates. Known activities of COR are mediated through its binding to the F-box–containing JA coreceptor CORONATINE INSENSITIVE1. By analyzing the intera...
متن کاملResistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms.
A new allele of the coronatine-insensitive locus (COI1) was isolated in a screen for Arabidopsis thaliana mutants with enhanced resistance to the bacterial pathogen Pseudomonas syringae. This mutant, designated coi1-20, exhibits robust resistance to several P. syringae isolates but remains susceptible to the virulent pathogens Erisyphe and cauliflower mosaic virus. Resistance to P. syringae str...
متن کاملA deletion in NRT2.1 attenuates Pseudomonas syringae-induced hormonal perturbation, resulting in primed plant defenses.
For an efficient defense response against pathogens, plants must coordinate rapid genetic reprogramming to produce an incompatible interaction. Nitrate Trasnporter2 (NRT2) gene family members are sentinels of nitrate availability. In this study, we present an additional role for NRT2.1 linked to plant resistance against pathogens. This gene antagonizes the priming of plant defenses against the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular plant pathology
دوره 6 6 شماره
صفحات -
تاریخ انتشار 2005